Cloud

Open Hardware Pushes GPU Computing Envelope

The hyperscalers of the world are increasingly dependent on machine learning algorithms for providing a significant part of the user experience and operations of their massive applications, so it is not much of a surprise that they are also pushing the envelope on machine learning frameworks and systems that are used to deploy those frameworks.

Compute

In-Memory Breathes New Life Into NUMA

Hyperscalers and the academics that often do work with them have invented a slew of distributed computing methods and frameworks to get around the problem of scaling up shared memory systems based on symmetric multiprocessing (SMP) or non-uniform memory access (NUMA) techniques that have been in the systems market for decades.