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Introduction
Artificial intelligence (AI), the dream of computer scientists for over half 
a century, is no longer science fiction—it is already transforming every 
industry. AI is the use of computers to simulate human intelligence. AI 
amplifies our cognitive abilities—letting us solve problems where the 
complexity is too great, the information is incomplete, or the details are 
too subtle and require expert training.

While the machine learning field has been active for decades, deep 
learning (DL) has boomed over the last five years. In 2012, Alex 
Krizhevsky of the University of Toronto won the ImageNet image 
recognition competition using a deep neural network trained on NVIDIA 
GPUs—beating all the human expert algorithms that had been honed 
for decades. That same year, recognizing that larger networks can learn 
more, Stanford’s Andrew Ng and NVIDIA Research teamed up to develop 
a method for training networks using large-scale GPU computing 
systems. These seminal papers sparked the “big bang” of modern AI, 
setting off a string of “superhuman” achievements. In 2015, Google and 
Microsoft both beat the best human score in the ImageNet challenge. In 
2016, DeepMind’s AlphaGo recorded its historic win over Go champion 
Lee Sedol and Microsoft achieved human parity in speech recognition.

GPUs have proven to be incredibly effective at solving some of the most 
complex problems in deep learning, and while the NVIDIA deep learning 
platform is the standard industry solution for training, its inferencing 
capability is not as widely understood. Some of the world’s leading 
enterprises from the data center to the edge have built their inferencing 
solution on NVIDIA GPUs. Some examples include:

 > Twitter Periscope runs inferencing on GPUs to understand video 
content in real-time, enabling more sophisticated video searches 
and user recommendations. 

 > Pinterest uses cloud-based GPUs to minimize user wait time 
(or latency) for its Related Pins service, delivering engaging 
recommendations based on users’ interests.

 > JD.com runs inference-based intelligent video analysis in real time 
on every frame of video of 1,000 HD video channels, and increased 
its per-server throughput by 20x.

 > iFLYTEK switched to Tesla GPUs for its Mandarin speech recognition 
service in China, and is now able to handle 10x the number of 
concurrent requests, and reduced its operational TCO by 20%.

 > Cisco’s Spark Board and Spark Room Kit, powered by Jetson GPU, 
are re-inventing the meeting room, enabling wireless 4K video 
sharing, and using deep learning for voice and facial recognition, as 
well as enhancing resource planning.

https://www.technologyreview.com/s/601284/twitters-artificial-intelligence-knows-whats-happening-in-live-video-clips/
https://www.ciscospark.com/products/spark-board.html
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NVIDIA deep learning platform spans from the data center to the 
network’s edge. In this paper, we will describe how the platform 
delivers giant leaps in performance and efficiency, resulting in dramatic 
cost savings in the data center and power savings at the edge.

The Deep Learning Workflow
The two major operations from which deep learning produces insight are 
training and inference. While similar, there are significant differences. 
Training feeds examples of objects to be detected/recognized like 
animals, traffic signs, etc., allowing it to make predictions, as to what 
these objects are. The training process reinforces correct predictions 
and corrects the wrong ones. Once trained, a production neural network 
can achieve upwards of 90-98% correct results. "Inference" is the 
deployment of a trained network to evaluate new objects, and make 
predictions with similar predictive accuracy.
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Both training and inference start with the forward propagation 
calculation, but training goes further. After forward propagation when 
training, the results from the forward propagation are compared 
against the (known) correct answer to compute an error value. A 
backward propagation phase propagates the error back through the 
network’s layers and updates their weights using gradient descent to 
improve the network’s performance on the task it is trying to learn. It is 
common to batch hundreds of training inputs (for example, images in an 
image classification network or spectrograms for speech recognition) 
and operate on them simultaneously during deep neural network (DNN) 
training to amortize loading weights from GPU memory across many 
inputs, increasing computational efficiency.

Inference can also batch hundreds of samples to achieve optimal 
throughput on jobs run overnight in data centers to process substantial 
amounts of stored data. These jobs tend to emphasize throughput over 
latency. However, for real-time usages, high batch sizes also carry a 
latency penalty, and for these usages, lower batch sizes (as low as a 

Figure 1: High-level deep learning 
workflow showing training, then 
followed by inference.
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single sample) are used, trading off throughput to get lowest latency. 
A hybrid approach, sometimes referred to as “auto-batching”, sets a 
time threshold of say, 10 milliseconds, and batches as many samples 
as possible within those ten milliseconds before sending them on for 
inference. This approach achieves better throughput while maintaining 
a set latency amount.

The NVIDIA Deep Learning Platform 
The NVIDIA platform is designed to make deep learning accessible to 
every developer and data scientist anywhere in the world. All major DL 
frameworks, including CAFFE, Caffe2, TensorFlow, Microsoft Cognitive 
Toolkit, PyTorch, and MXNet, are accelerated on the NVIDIA platform. 
It includes productivity tools like NVIDIA DIGITS™, which enables 
developers to quickly design the best network for their data without 
writing any code. Developers have access to state-of-the-art tools 
in the NVIDIA Deep Learning SDK for applications in the data center, 
in autonomous vehicles, and in devices at the edge. Inference can be 
deployed from data center to the edge and the engine in the NVIDIA 
deep learning platform that optimizes a neural network for optimal 
performance across these deployments is TensorRT. 

The Tesla V100, Based on NVIDIA Volta Architecture 
The NVIDIA® Tesla® V100 accelerator incorporates the powerful 
new NVIDIA Volta GPU architecture. Volta not only builds upon the 
advances of its predecessor, the NVIDIA Pascal™ GPU architecture, 
but significantly improves both performance and scalability, adding 
many new features that improve programmability. These advances are 
supercharging HPC, data center, supercomputer, and deep learning 
systems and applications.

VOLTA KEY FEATURES

Key compute features of Tesla V100 include:

 > New Streaming Multiprocessor (SM) Architecture Optimized 
for Deep Learning: Volta features a major new redesign of the SM 
processor architecture that is at the center of the GPU. New Tensor 
Cores designed specifically for deep learning deliver up to 12x higher 
peak TFLOPS for training and 6x higher peak TFLOPS for inference.

 > Next-Generation NVIDIA NVLink™: The next-generation of NVIDIA’s 
NVLink high-speed interconnect delivers higher bandwidth, more 
links, and improved scalability for multi-GPU server configurations. 
Volta GV100 supports up to six NVLink links and total bandwidth of 
300 GB/sec. 
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 > HBM2 Memory: Faster, Higher Efficiency: Volta’s highly tuned 16 
GB HBM2 memory subsystem delivers 900 GB/sec of peak memory 
bandwidth. The combination of both a new-generation HBM2 
memory from Samsung, and a next-generation memory controller 
in Volta deliver up to 95% memory bandwidth utilization running 
many workloads.

 > Volta Multi-Process Service: Volta Multi-Process Service (MPS) is 
a new feature of the Volta GV100 architecture providing hardware 
acceleration of critical components of the CUDA MPS server, 
enabling improved performance, isolation, and better quality of 
service (QoS) for multiple compute applications sharing the GPU.

 > Enhanced Unified Memory and Address Translation Services:  
V100 Unified Memory technology includes new access counters to 
allow more accurate migration of memory pages to the processor 
that accesses them most frequently, improving efficiency for 
memory ranges shared between processors.

 > Maximum Performance and Maximum Efficiency Modes:   
In Maximum Performance mode, the Tesla V100 accelerator will 
operate up to its TDP (Thermal Design Power) level of 300 W to 
deliver the highest data throughput. Maximum Efficiency Mode 
allows data center managers to tune power usage of their Tesla 
V100 accelerators to operate with optimal performance per watt.

 > Cooperative Groups and New Cooperative Launch APIs:  
Cooperative Groups is a new programming model introduced 
in CUDA 9 for organizing groups of communicating threads. 
Cooperative Groups allows developers to express the granularity at 
which threads are communicating, helping them to express richer, 
more efficient parallel decompositions. 

 > Volta Optimized Software: New versions of deep learning 
frameworks such as Caffe2, MXNet, Microsoft Cognitive Toolkit, 
PyTorch, TensorFlow, and others harness the performance of Volta 
to deliver dramatically faster training times and higher multi-node 
training performance. 

To learn more, download the Volta Architecture Whitepaper (link: https://
www.nvidia.com/object/volta-architecture-whitepaper.html)

TensorRT - The Programmable Inference Accelerator
NVIDIA TensorRT™ is a high-performance deep learning inference 
optimizer and runtime that delivers low latency, high-throughput 
inference for deep learning applications. TensorRT can be used to rapidly 
optimize, validate, and deploy trained neural networks for inference to 
hyperscale data centers, embedded, or automotive product platforms.

https://www.nvidia.com/object/volta-architecture-whitepaper.html
https://www.nvidia.com/object/volta-architecture-whitepaper.html
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Once the neural network is trained, TensorRT enables the network to be 
compressed, optimized and deployed as a runtime without the overhead 
of a framework. TensorRT can be accessed three ways: A C++ API for 
describing a neural network to run, a high-level Python interface that 
can load existing Caffe or TensorFlow models, or a Representational 
State Transfer (REST) API interface for easy use in a devops 
environment. TensorRT combines layer merges and model compaction, 
and also performs normalization and conversion to optimized matrix 
math depending on the specified precision (FP32, FP16 or INT8) for 
improved latency, throughput, and efficiency.

Inference computations can use lower-precision tensor operations 
with minimal accuracy loss. Tesla V100 and P4 accelerators implement 
16-bit floating-point (FP16) and 8-bit integer (INT8) instructions, 
respectively, for dot product operations. The result is improved model 
size capacity, memory utilization, latency, and throughput as well as 
power efficiency.

In measured benchmarks, Tesla P4 delivers up to a 3x throughput 
improvement using INT8, better latency, and higher power efficiency.

NVIDIA
TensorRT

TESLA P4

DRIVE PX 2

TESLA V100

NVIDIA DLA

JETSON TX2

Figure 2

 
NVIDIA TensorRT is a high-performance deep learning inference 
optimizer and runtime for production deployment of deep learning 
applications. It can be used to rapidly optimize, validate and deploy trained 
neural networks for inference to hyperscale data centers, embedded, 
or automotive GPU platforms. With it, developers can unleash the full 
potential of NVIDIA Volta architecture’s Tensor Cores to deliver three times 
more performance than the previous generation architecture.

TensorRT 3’s key features include:

 > TensorFlow Support: TensorFlow models can be directly ingested, 
optimized and deployed with up to 18x faster performance compared 
to TensorFlow framework inference on Tesla V100.

Figure 2: TensorRT can ingest trained 
neural networks from diverse deep 
learning frameworks, and optimize them 
for deployed inference on any NVIDIA 
deep learning platform.
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 > Python API Support: Ease of use improvement, allowing developers 
to call TensorRT using the Python scripting language.

 > Weight and Activation Precision Optimization: Significantly 
improves inference performance of models trained in FP32 full 
precision by quantizing them to FP16 and INT8, while minimizing 
accuracy loss.

 > Layer and Tensor Fusion (Graph Optimization): Improves GPU 
utilization and optimizes memory storage and bandwidth by 
combining successive nodes into a single node, for single kernel 
execution.

 > Kernel Auto-Tuning (Auto-tuning): Optimizes execution time by 
choosing the best data layer and best parallel algorithms and 
kernels for the target Jetson, Tesla or DrivePX GPU platforms.

 > Dynamic Tensor Memory (Memory optimization): Reduces memory 
footprint and improves memory re-use by allocating memory for 
each tensor only for the duration its usage

 > Multi Stream Execution: Scales to multiple input streams, by 
processing them parallel using the same model and weights  
Figure 2: TensorRT can ingest trained neural networks from 
diverse deep learning frameworks, and optimize them for deployed 
inference on any NVIDIA deep learning platform.

While it is possible to do inference operations within a deep 
learning framework, TensorRT easily optimizes networks to 
deliver far more performance. TensorRT also takes full advantage 
of the Volta architecture, and this combination delivers up to 70x 
more throughput vs. a CPU-only server. 

This chart shows maximum throughput numbers for several 
image-based convolutional neural networks (CNNs), using a larger 
batch size of 128, which delivers the best throughput.



NVIDIA DEEP LEARNING INFERENCE PLATFORM PERFORMANCE STUDY | TECHNICAL OVERVIEW | 7

0

20X

40X

60X

80X

P4
(INT8)

V100
(FP16)

P100
(FP16)

VGG-19GoogLeNetResNet-50

70X Higher Throughput vs. CPU on CNNs

Workloads: ResNet-50, GoogleNet, VGG-19 | Data-set: ImageNet | CPU Servers: Xeon E5-2690 v4 @ 2.6GHz | GPU: add 1X 
NVIDIA® Tesla® V100 or Tesla P4

Th
ro

ug
hp

ut
 S

pe
ed

up
 v

. C
PU

 S
er

ve
r

Chart 1

As deep learning expands the use-cases it can examine, new types 
of neural networks are emerging on an almost-monthly cadence, as 
evidenced by the number of academic papers published on sites like 
Cornell University’s arXiv (link: https://arxiv.org/). An emerging class of 
neural networks for speech recognition, natural language processing 
and translation is recurrent neural networks (RNNs).
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GPU Inference: Business Implications 
Tesla V100 and P4 deliver massive performance boosts and power 
efficiency, but how does that benefit acquisition and operations 
budgets? Simply put: big performance translates into big savings.  

Chart 2: OpenNMT is a full-featured, 
open-source neural machine translation 
system that uses the Torch math 
toolkit. The results shown here are on a 
workload called WMT-DE that is doing 
translation from English to German.  
Our inference tests here use Intel’s Deep 
Learning SDK beta 2 for CPU tests, and 
TensorRT 3 for the Tesla V100. Tesla 
V100 delivers over 130 times more 
throughput.

Chart 1: TensorRT supports both FP16 
and INT8 precisions with near-zero 
accuracy loss. Here, Tesla V100 and 
TensorRT combine to deliver 70x more 
inference throughput versus a CPU-only 
server.

https://arxiv.org/
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The chart below shows that a single HGX server with eight Tesla V100s 
delivers the same throughput performance of 120 dual-socket high-
end Xeon Scalable Processor CPU-based servers that take up three 
server racks. That translates into a 13X reduction in Total Cost of 
Ownership (TCO). 

13x Better Data Center TCO 
Delivering 48,000 images/second at 
1/12 the Cost | 1/20 the Power | 3 Racks in a Box

Image 1

Inference Performance: Getting the Complete Picture 
Measured performance in computing tends to fixate on speed of 
execution. But in deep learning inference performance, speed is one 
of four critical factors that come into play. Here, it is about speed 
(throughput), latency, efficiency, and accuracy. Two of these factors 
are key contributors to end-users’ quality of experience (accuracy and 
latency), while the other pair (throughput and efficiency) are critical to 
data center efficiency.

Anatomy of Inference Performance

QUALITY OF
EXPERIENCE

LATENCY
How Quickly

ACCURACY
The Right Answer

DATA CENTER
PERFORMANCE

EFFICIENCY
Using How Much Power

THROUGHPUT
Data Center Output

Figure 3

Figure 3: Optimal inference performance 
must deliver on four fronts to satisfy 
both data center performance and user 
experience requirements.

Image 1: A single HGX server with 
8 Tesla V100s (left) delivers image 
recognition throughput of about 48,000 
images/second on ResNet-50, the same 
performance as three racks containing 
120 dual-socket CPU Xeon Scalable 
Processor servers (right). To estimate 
Xeon Scalable Processor performance, 
we used measured performance 
of a Xeon E5-2690v4, and applied a 
performance scale factor of 1.5x.
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Data Center Efficiency
Throughput: The volume of output within a given period. Often 
measured in inferences/second or samples/second, per-server 
throughput is critical to cost-effective scaling in data centers, and to 
Tesla accelerators are industry’s best end-to-end platform for training 
and inferencing in the data center.

Efficiency: Amount of throughput delivered per unit-power, often 
expressed as performance/watt. Efficiency is another key factor to cost-
effective data center scaling, since servers, server racks and entire 
data centers must operate within fixed power budgets.

Quality of Experience
Latency: Time to execute an inference, usually measured in 
milliseconds. Low latency is critical to delivering rapidly growing, 
real-time inference-based services. As an example, for speech-based 
services to feel natural and conversational, answers need to come back 
to the end-user as quickly as possible. Even a lag of a one second starts 
to feel unnatural. Google has stated1 that 7ms is an optimal latency 
target for usages such as search, and so throughput delivered within 
those 7ms becomes another important measure. For other real-time 
usages, a recent Google presentation2 discussed 200ms as a viable 
latency target for speech-to-text or translation. 

Accuracy: A trained neural network’s ability to deliver the correct 
answer. For image-based usages, the critical metric is expressed 
as a Top-5 or Top-1 percentage. These “Top” metrics represent the 
inference’s estimation as to what the analyzed sample most likely is. 
A higher percentage Top-5 or Top-1 indicates higher confidence of 
the inference’s answer. Speech and translation services look at other 
metrics, such as a Bilingual Evaluation Understudy (BLEU) score. 
Generally, neural network training requires higher precision, whereas 
inference can often be carried out using reduced precision. Using 
lower precision improves throughput, efficiency and even latency, 
but maintaining high accuracy is essential for best user experiences. 
TensorRT offers FP32 and FP16 floating-point precisions, as well as 
INT8 integer precision with near-zero loss in accuracy.

Both Tesla V100 and Tesla P4 bring massive increases in inference in 
the four critical inference performance metrics versus CPU-only data 
center servers, and a single Tesla GPU-equipped server node can 
replace up to 70 CPU-only nodes. 

1. ref: https://arxiv.org/ftp/arxiv/
papers/1704/1704.04760.pdf 
 
2. https://atscaleconference.com/videos/
google-translate-breaking-language-barriers-in-
emerging-markets/

https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets/
https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets/
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets/
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets/
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Performance Efficiency 
We have covered maximum throughput already, and while very high 
throughput on deep learning workloads is a key consideration, so too is 
how efficiently a platform can deliver that throughput.
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Chart 3: Both Tesla V100 and Tesla P4 
offer massive increases in performance 
efficiency as measured by performance/ 
watt. For scale-out inference and 
data center edge solutions, Tesla P4 
offer excellent efficiency with a TDP 
of 75W. Tesla V100 delivers much 
higher throughput thanks to the Volta 
architecture, and higher TDP.

Chart 4: A Tesla V100 GPU-equipped 
server can deliver over 100x better 
efficiency than a CPU-only server on 
speech-focused inference on an RNN.



Accuracy
What becomes evident as we examine the various aspects of inference 
performance is that they are all inextricably linked. A platform that 
delivers on one, but falters on others will ultimately not get the job 
done. Tesla V100 and Tesla P4 combined with TensorRT 3 are ideal 
inference platforms, as they both can deliver massive performance 
improvements with near-zero loss in accuracy.

No Accuracy Loss at FP16, INT8 Using TensorRT
GoogLeNet (FP16) FP32 FP16 Difference

72.23% 72.25% +0.02%

GoogLeNet (INT8) FP32 INT8 Difference

73.11% 72.54% -0.57%

Table 1
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Chart 5: With the emergence of 
real-time AI-based services, latency 
becomes an increasingly important 
facet of inference performance. So 
not only is high throughput critical, 
but delivering high throughput within 
a specified latency budget to optimize 
end-user experience. Google has 
stated3 that 7ms is an optimal latency 
target, and applying that latency 
target here, the above chart shows 
that Tesla V100 delivers 40x more 
performance than a CPU-only server 
within the 7-millisecond latency budget. 
Meanwhile, the CPU server is unable to 
deliver its throughput of 140 images/sec 
within the specified latency budget. 

3. ref: https://arxiv.org/ftp/arxiv/
papers/1704/1704.04760.pdf

https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
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Jetson: Inference at the Edge
NVIDIA Jetson™ TX2 is a credit card-sized open platform that delivers AI 
computing at the edge—opening the door to powerfully intelligent factory 
robots, commercial drones, and smart cameras for AI cities. Based on 
NVIDIA’s Pascal architecture, Jetson TX2 offers twice the performance 
of its predecessor, or it can run at more than twice the power efficiency 
while drawing less than 7.5 watts of power. This allows Jetson TX2 to 
run larger, deeper neural networks on edge devices. The result: smarter 
devices with higher accuracy and faster response times for tasks like 
image classification, navigation, and speech recognition. Deep learning 
developers can use the very same development tools for Jetson that they 
use on the Tesla platform such as CUDA, cuDNN, and TensorRT.

Jetson TX2 was designed for peak processing efficiency at 7.5W of 
power. This level of performance, referred to as Max-Q, represents the 
maximum performance and maximum power efficiency range on the 
power/performance curve. Every component on the module including 
the power supply is optimized to provide the highest efficiency at this 
point. The Max-Q frequency for the GPU is 854MHz, and for the ARM 
A57 CPUs, it is 1.2GHz. While Dynamic Voltage and Frequency Scaling 
(DVFS) permits Jetson TX2’s Tegra “Parker” SoC to adjust clock speeds 
at run time according to user load and power consumption, the Max-Q 
configuration sets a cap on the clocks to ensure that the application is 
operating in the most efficient range only.

Jetson enables real-time inferencing when connectivity to a AI data 
center is either not possible (e.g. remote sensing) or the end-to-end 
latency is too high for real time use (e.g. autonomous drone). Although 
most platforms with a limited power budget will benefit most from 

Chart 6: For speech applications, Google 
has described4 in a recent presentation 
a target latency of about 200ms for 
speech applications. Here again, 
Tesla V100 is not only outperforming 
a CPU-only server by a factor of more 
than 150x, but is staying well within 
the specified 200ms latency budget. 
Meanwhile, the CPU can only deliver 
about 4 sentences per second, and 
misses the required latency boundary. 
 

4. ref: https://atscaleconference.com/videos/
google-translate-breaking-language-barriers-in-
emerging-markets/

https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets/
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets/
https://atscaleconference.com/videos/google-translate-breaking-language-barriers-in-emerging-markets/
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Max-Q behavior, others may prefer maximum clocks to attain peak 
throughput, albeit with higher power consumption and reduced 
efficiency. DVFS can be configured to run at a range of other clock 
speeds, including underclocking and overclocking. Max-P, the other 
preset platform configuration, enables maximum system performance 
in less than 15W. The Max-P frequency is 1.12GHz for the GPU and 2GHz 
for the CPU when either the ARM A57 cluster is enabled, or the Denver 2 
cluster is enabled, and 1.4GHz when both clusters are enabled.
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Chart 7

 
For many network-edge applications, low latency is a must-have. 
Executing inference on-device is a far more optimal approach than 
trying to send this work over a wireless network and in and out of a 
CPU-based server in a remote data center. In addition to its on-device 
locality, Jetson TX2 also delivers outstanding low-latency on small 
batch workloads, usually under ten milliseconds. For comparison, a 
CPU-based server has a latency of around 23 milliseconds, and, adding 
roundtrip network and data center travel time, that figure can be well 
over 100 milliseconds.

The Rise of Accelerated Computing
Google* has announced its Cloud Tensor Processing Unit (TPU), and its 
applicability to deep learning training and inference. And while Google 
and NVIDIA chose different development paths, there are several themes 
common to both our approaches. Specifically, AI requires accelerated 
computing. Accelerators provide the significant data processing 
necessary to keep up with the growing demands of deep learning in an 
era when Moore’s law is slowing. Tensor processing is at the core of 
delivering performance for deep learning training and inference. Tensor 

Chart 7: Jetson TX2 performs 
GoogLeNet inference up to 33.2 images/ 
sec/Watt, nearly double the efficiency 
of Jetson TX1. Additionally, Jetson TX2 
delivers up to 27x better performance/ 
watt versus a Xeon* CPU-based server.
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processing is a major new workload that enterprises must consider 
when building modern data centers. Accelerating tensor processing can 
dramatically reduce the cost of building modern data centers.

According to Google, the Cloud TPU (also referred to as "TPU2") will 
be available later this year, and that a single Cloud TPU can deliver 45 
teraflops of computing horsepower. NVIDIA’s Tesla V100 can deliver 125 
teraflops of deep learning performance for both training and inference. 
An 8-GPU configuration such as DGX-1 can now deliver a petaflop of 
deep learning computing power.

NVIDIA’s approach democratizes AI computing for every company, every 
industry, every computing platform and accelerates every development 
framework – from the cloud, to the enterprise, to cars, and to the edge. 
Google and NVIDIA are the clear leaders – we collaborate closely while 
taking different approaches to enable the world with AI.

Note on FPGA 
As the deep learning field continues to grow rapidly, other types of 
hardware have been proposed as potential solutions for inference, 
such as Field Programmable Gate Arrays (FPGA). FPGAs are used for 
specific functions in network switches, 4G base stations, motor control 
in automotive, and test equipment in semiconductors among other 
use cases. It is a sea of general-purpose programmable logic gates 
designed for various usages, so long as the problem fits on the chip. But 
because these are programmable gates rather than a hard-wired ASIC, 
FPGAs are inherently less efficient.
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Chart 8

Chart 8: Comparing throughput on 
the GoogLeNet network of measured 
Tesla GPU data versus Intel's stated 
projections of its Arria 10 and Stratix 
10 FPGAs.5 Using a batch size of 1 
produces a theoretical number to get to 
lowest latency, which is critical for those 
inference-based services that depend 
on fast response times. However, an 
improved approach sets a latency limit, 
and then gets maximum throughput 
within that limit, giving developers and 
end-users the best of both worlds: 
higher throughput and low latency. 
Google has stated that 7ms is a good 
target for real-time inference-based 
workloads, and Tesla GPUs are able to 
deliver significantly more throughput 
performance and performance/watt 
efficiency using this improved approach. 

5. Accelerating Deep Learning with the OpenCL™ 
Platform and Intel: www.altera.com/content/dam/
altera-www/global/en_US/pdfs/literature/wp/wp-
01269-accelerating-deep-learning-with-opencl-
and-intel-stratix-10-fpgas.pdf

http://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01269-accelerating-deep-learning-with-opencl-and-intel-stratix-10-fpgas.pdf
http://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01269-accelerating-deep-learning-with-opencl-and-intel-stratix-10-fpgas.pdf
http://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01269-accelerating-deep-learning-with-opencl-and-intel-stratix-10-fpgas.pdf
http://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01269-accelerating-deep-learning-with-opencl-and-intel-stratix-10-fpgas.pdf
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Programmability and Time to Solution Considerations
The speed of deep learning innovation drives the need for a 
programmable platform that enables developers to quickly try new 
network architectures, and iterate as new findings come to light.
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Another challenge posed by FPGAs is that in addition to software 
development, FGPAs must be reconfigured at the hardware level 
to run each iteration of new neural network architectures. This 
complex hardware development slows time to solution by weeks and 
sometimes months, and hence, innovation. Whereas GPUs continue to 
be the most programmable platform of choice for quickly prototyping, 
testing and iterating cutting-edge network designs, thanks to robust 
framework acceleration support, dedicated deep learning logic like 
Tesla V100’s Tensor Cores, and TensorRT to optimize trained networks 
for deployed inference.

Image 2: The diversity and complexity 
of neural network types continues to 
expand rapidly, and a platform that 
enables developers to quickly experiment 
and iterate is critical to driving deep 
learning innovation forward.
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Conclusion
Deep learning is revolutionizing computing, impacting enterprises 
across multiple industrial sectors. The NVIDIA deep learning platform 
is the industry standard for training, and leading enterprises are 
already deploying GPUs for their inferencing workloads, leveraging its 
powerful benefits. Neural networks are rapidly becoming exponentially 
larger and more complex, driving massive computing demand and cost. 
In cases where AI services need to be responsive, modern networks are 
too compute-intensive for traditional CPUs.

Inference performance has four aspects—throughput, efficiency, 
latency and accuracy—that are critical to delivering both data center 
efficiency and great user experiences. This paper demonstrates how 
Tesla GPUs can deliver up to 13X TCO savings in the data center for 
“offline inferencing” use cases. In fact, the savings in energy cost alone 
more than pays for the Tesla-powered server. And at network's edge, 
the new Jetson TX2 brings server-class inference performance in less 
than 10W of power and enables device-local inference to significantly 
cut inference latency times.

An effective deep learning platform must have three distinct qualities: 
It must have a processor custom-built for deep learning. It must 
be software-programmable. And industry frameworks must be 
optimized for it, powered by a developer ecosystem that is accessible 
and adopted around the world. The NVIDIA deep learning platform is 
designed around these three qualities and is the only end-to-end deep 
learning platform. From training to inferencing. From data center to the 
network’s edge.

To learn more about NVIDIA’s Tesla products visit:  
www.nvidia.com/tesla

To learn more about JetsonTX2, visit:  
www.nvidia.com/object/embedded-systems.html

To learn more about TensorRT and other NVIDIA development tools 
visit: developer.nvidia.com/tensorrt

To see the extensive list of applications that already take advantage of 
GPU acceleration today visit: www.nvidia.com/gpu-applications 

*All trademarks and registered trademarks are the property of their respective owners.  

http://www.nvidia.com/tesla
http://developer.nvidia.com/tensorrt
http://www.nvidia.com/gpu-applications
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Performance Data Tables

CNNs TESLA V100 (FP16/FP32 MIXED PRECISION)

NETWORK BATCH 
SIZE

PERF  
(IMGS/ SEC)

TOTAL
BOARD POWER

PERFORMANCE/
WATT

LATENCY
(MS)

GoogLeNet 1 876 98.6 8.88 1.14

2 1,235 65.4 18.88 1.62

4 2,194 80.4 27.29 1.82

8 3,776 112.2 33.65 2.12

64 8,630 209.2 41.25 7.42

128 9,404 225.6 41.68 13.61

ResNet-50 1 504 94.2  5.35 1.99

2 797 66.8 11.93 2.51

4 1,450 83.7 17.32 2.76

8 2,493 113.6 21.95 3.21

64 5,572 196.4 28.37 11.49

128 6,024 210.1 28.67 21.25

VGG-19 1 464 144 3 2 

2 718 138.7 5.18 2.79

4 1,032 173.4 5.95 3.88

8 1,334 203.4 6.56 6

64 1,979 241 8.21 32.34

128 2,030 238.4 8.52 63.04

CNNs TESLA P4 (INT8 PRECISION)

NETWORK BATCH 
SIZE

PERF  
(IMGS/ SEC)

TOTAL BOARD
POWER

PERFORMANCE/
WATT

LATENCY
(MS)

GoogLeNet 1 837 42.4 19.74 1.19

2 1,106 45.6 24.25 1.81

4 1,489 49.1 30.33 2.69

8 1,930 56.66 34.06 4.15

64 2,531 64.25 39.39 25.29

128 2,566 64.2 39.97 49.89

ResNet-50 1 600 32.9 18.24 1.67

2 765 32.8 23.32 2.61

4 1,019 33 30.88 3.93

8 1,319 33.1 39.85 6.07

64 1,715 33.2 51.66 37.32

128 1,721 32.9 52.31 74.36

VGG-19 1 204 32.6 6 4.9

2 273 32.9 8.30 7.33

4 338 32.8 10.30 11.82

8 380 32.66 11.64 21.04

64 414 32.7 12.66 153.23

128 438 32.8 13.35 292
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RNN TESLA V100 (FP16/FP32 MIXED PRECISION)

NETWORK BATCH SIZE PERF (SENTENCES/ SEC) LATENCY (MS)

OpenNMT 1 23 42

2 46 43

4 82 49

8 156 51

64 541 118

128 725 176

JETSON TX2 (MAXQ MODE)

NETWORK BATCH 
SIZE

PERF 
(IMGS/ 

SEC)

AP+DRAM 
POWER 

UPSTREAM* 
(WATTS)

AP+DRAM 
PERFORMANCE / 

WATT

GPU POWER 
DOWNSTREAM* 

(WATTS)

GPU 
PERFORMANCE / 

WATT

LATENCY 
(MS)

AlexNet 1 119 6.6 18.0 2.3 52.4 8.4 

2 188 6.6 28.4 2.6 73.4 10.6

4 264 6.7 39.3 2.9 92.6 15.2 

8 276 6.1 45.1 2.8 99.6 29.0 

64 400 6.4 62.6 3.2 125.7 160.0

128 425 6.4 66.4 3.2 132.6 301.3 

GoogLeNet 1 141 5.7 24.7 2.6 54.3 7.1 

2 156 5.9 26.2 2.7 57.6 12.8 

4 170 6.2 27.7 2.8 59.8 23.5 

8 180 6.4 28.2 3.0 60.6 44.5 

64 189 6.6 28.8 3.1 61.6 337.8 

128 191 6.6 28.9 3.1 61.6 671.8 

ResNet-50 1 64.3 5.4 11.9 2.3 28.3 15.6 

2 76.5 5.3 14.4 2.3 33.7 26.2 

4 81.0 5.4 15.1 2.3 34.8 49.4 

8 83.4 5.4 15.4 2.4 35.4 95.9 

64 89.4 5.5 16.2 2.4 37.6 715.5 

128 89.9 5.5 16.2 2.4 37.7 1,424.3 

VGG-19 1 18.8 7.2 2.6 2.9 6.4 53.1 

2 21.5 7.2 3.0 3.1 6.9 93.1 

4 22.6 7.3 3.1 3.1 7.2 176.8 

8 22.8 7.2 3.2 3.1 7.3 351.3 

64 22.9 7.2 3.2 3.2 7.1 2,792.4 

128 22.6 7.1 3.2 3.2 7.2 5,660.6 

*Up = upstream power (above voltage regulators), and Down = downstream power (below the voltage regulators)

JETSON TX2 (MAXP MODE)

NETWORK BATCH 
SIZE

PERF 
(IMGS/ 

SEC)

AP+DRAM 
POWER 

UPSTREAM* 
(WATTS)

AP+DRAM 
PERFORMANCE / 

WATT

GPU POWER 
DOWNSTREAM* 

(WATTS)

GPU 
PERFORMANCE / 

WATT

LATENCY 
(MS)

AlexNet 1 146 8.9 16.3 3.62 40.3 6.85 

2 231 9.2 25.2 4.00 57.7 8.66 

4 330 9.5 34.8 4.53 72.9 12.12 

8 349 8.8 39.8 4.42 79.0 22.90 

64 515 9.5 54.1 5.21 98.8 124.36 

128 546 9.6 56.9 5.28 103.5 234.32 
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GoogLeNet 1 179 8.2 21.8 4.14 43.2 5.6 

2 199 8.6 23.2 4.36 45.6 10.1 

4 218 9.0 24.2 4.61 47.2 18.4 

8 231 9.3 24.8 4.83 47.8 34.7 

64 243 9.7 25.1 5.03 48.3 263.6 

128 244 9.6 25.3 5.02 48.6 524.2 

ResNet-50 1 82 7.4 11.1 3.49 23.5 12.2 

2 98 7.5 13.0 3.63 26.9 20.5 

4 104 7.6 13.6 3.71 27.9 38.6 

8 107 8.0 13.4 3.95 27.1 74.8 

64 115 7.9 14.6 3.81 30.1 558.9 

128 115 7.9 14.6 3.82 30.1 1,113.2 

VGG-19 1 23.7 10 2.3 5 5.0 42.2 

2 26.8 10 2.6 4.93 5.4 74.7 

4 28.2 10 2.7 4.97 5.7 142.0 

8 28.3 10 2.8 4.96 5.7 282.7 

64 28.7 10 2.8 5.16 5.6 2,226.7 

128 28.4 10 2.8 5.09 5.6 4,514.0 

*Up = upstream power (above voltage regulators), and Down = downstream power (below the voltage regulators)

JETSON TX1

NETWORK BATCH 
SIZE

PERF 
(IMGS/ 

SEC)

AP+DRAM 
POWER 

UPSTREAM* 
(WATTS)

AP+DRAM 
PERFORMANCE 

/ WATT

GPU POWER 
DOWNSTREAM* 

(WATTS)

GPU 
PERFORMANCE / 

WATT

LATENCY 
(MS)

AlexNet 1 95 9.2 10.3 5.1 18.6 10.5 

2 158 10.3 15.2 6.4 24.5 12.7 

4 244 11.3 21.7 7.6 32.0 16.4 

8 253 11.3 22.3 7.8 32.5 31.6 

64 418 12.5 33.5 9.4 44.5 153.2 

128 449 12.5 9.6 46.9 284.9 

GoogLeNet 1 119 10.7 11.1 7.2 16.4 8.4 

2 133 11.2 12.0 7.7 17.4 15.0 

4 173 11.6 14.9 8.0 21.6 23.2 

8 185 12.3 15.1 9.0 20.6 43.2 

64 196 12.7 15.5 9.4 20.7 327.0 

128 196 12.7 15.5 9.5 20.7 651.7 

ResNet-50 1 60.8 9.5 6.4 6.3 9.7 16.4 

2 67.8 9.8 6.9 6.5 10.5 29.5 

4 80.5 9.7 8.3 6.6 12.1 49.7 

8 84.2 10.2 8.3 7.0 12.0 95.0 

64 91.2 10.0 9.1 6.9 13.2 701.7 

128 91.5 10.4 8.8 7.3 12.6 1,399.3 

VGG-19 1 13.3 11.3 1.2 7.6 1.7 75.0 

2 16.4 12.0 1.4 8.6 1.9 122.2 

4 19.2 12.2 1.6 8.9 2.2 207.8 

8 19.5 12.0 1.6 8.6 2.3 410.6 

64 20.3 12.2 1.7 9.1 2.2 3,149.6 

128 20.5 12.5 1.6 9.3 2.2 3,187.3 

*Up = upstream power (above voltage regulators), and Down = downstream power (below the voltage regulators)
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Test Methodology
For our performance analysis, we focus on four neural network 
architectures. AlexNet (2012 ImageNet winner), and the more 
recent GoogLeNet (2014 ImageNet winner), a much deeper and 
more complicated neural network compared to AlexNet, are two 
classical networks. VGG-19 and ResNet-50 are more recent ImageNet 
competition winners.

To cover a range of possible inference scenarios, we will consider two 
cases. The first case allows batching many input images together, to 
model use cases like inference in the cloud where thousands of users 
submit images every second. Here, large batches are acceptable, as 
waiting for a batch to assemble does not add significant latency. The 
second case covers applications that are extremely latency-focused; in 
this case, some batching is usually still feasible, but for our testing, we 
consider the low-batch case of batch size of two.

We compare five different devices: The NVIDIA Tegra X1 and X2 client- 
side processors, and the NVIDIA Tesla P4, V100 and the Intel* Xeon* 
data center processor. To run the neural networks on the GPU, we use 
TensorRT 2 EA, which will be released in an upcoming JetPack updated 
slated for release in 2Q’17. For the Intel* Xeon* E5-2690 v4, we run Intel* 
Deep Learning SDK v2016.1.0.861 Deployment Tool.

For all the GPU results, we run the “giexec” binary included in all 
builds of TensorRT. It takes prototxt network descriptor and caffe 
model files and populates the images with random image and weight 
data using a Gaussian distribution. For the CPU results, we run the 
“ModelOptimizer” binary with prototxt network descriptor and caffe 
model files to generate the .xml model file necessary to execute the 
“classification_sample” binary linked with MKL-DNN. We run the Intel* 
Deep Learning SDK Inference Engine using images from imagenet12 
rescaled and reformatted to RGB .bmp files. Both TensorRT and Intel* 
Deep Learning SDK Inference Engine use image sizes of 227x227 for 
AlexNet and 224x224 for GoogLeNet, VGG-19, and ResNet-50. The 
Intel* Deep Learning SDK Inference Engine threw the “bad_alloc” 
exception when running with a batch size of one for all networks we 
tested. Instead we use Intel Caffe for batch size of one linked with MKL 
2017.1.132 where we start with the default_vgg_19 protocol buffer files, 
and use Caffe’s standard performance benchmarking mode “caffe time” 
with the same images as Intel* Deep Learning SDK.

We compare FP32 and FP16 results on V100, and FP32 and INT8 results 
on P4. All Tegra X1 and X2 results are using FP16. Intel* Deep Learning 
SDK only supports FP32 since Xeon* E5-2690 v4 does not have native 
support for reduced precision floating-point numbers.



To compare power between different systems, it is important to 
measure power at a consistent point in the power distribution network. 
Power is distributed at a high voltage (pre-regulation), and then 
voltage regulators convert the high voltage to the correct level for the 
system-on-chip and DRAM (post-regulation). For our analysis, we are 
comparing pre-regulation power of the entire application processor 
(AP) and DRAM combined.

On the Xeon* E5-2690 v4, Intel* Deep Learning SDK is running on only 
one socket. CPU socket and DRAM power are as reported by the pcm-
power utility, which we believe are measured on the input side of the 
associated regulators. To measure pre-regulation (upstream) power 
for Tegra X1 and X2, we use production Jetson™ TX1 and TX2 modules 
both powered by a 9V supply. TX1 has major supply rails instrumented 
at the input side of the regulators, and TX2 has onboard INA power 
monitors. On the Tesla P4 and V100, we report the total board power 
consumed by a production cards using the NVSMI utility. We do not 
include the system CPU’s power in our Tesla measurements as the 
entire computation is happening on the GPU; the CPU only submits the 
work to the GPU.
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